Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Wei-Hua Li, ${ }^{\text {a }}$ Guo-Dong Si, ${ }^{\text {b }}$

Bao-Rong Hou, ${ }^{\text {c }}$ Zhi-Gang Yu, ${ }^{\text {a* }}$ Fa-Qian Liu ${ }^{\text {d }}$ and Yong-Qi Qin ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, People's Republic of China,
${ }^{\text {b }}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, 'Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China, and ${ }^{\mathbf{d}}$ Materials Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China

Correspondence e-mail: fqliu@vip.163.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.036$
$w R$ factor $=0.093$
Data-to-parameter ratio $=8.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-[3-(1,2,4-Triazol-1-yl)propionyl]phenyl 4-fluorobenzoate

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{FN}_{3} \mathrm{O}_{3}$, the dihedral angles made by the triazole ring with the plane of the central benzene ring and the p-fluorophenylcarbonyl group are 82.09 (2) and $82.05(2)^{\circ}$, respectively. There are weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intra- and intermolecular interactions in the crystal structure, which contribute to the stability.

Comment

Triazole rings appear frequently in the structures of various natural products and biologically active compounds, notably thiamine (vitamin B), penicillins and antibiotics, such as micrococcin (James \& Watson, 1966). Triazole derivatives have also attracted considerable attention in industry and agriculture because of their significant biological activities (Zhang et al., 2002). In this paper, we report the structure of the title compound, (I).

(I)

In the molecule of (I) (Fig. 1), the bond lengths and angles are generally normal in the benzene and triazole rings (Ji et al., 2002). The $\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{C} 14-\mathrm{O} 3$ bond lengths of 1.200 (3) and 1.216 (3) A, respectively (Table 1), are close to the typical $\mathrm{C}=\mathrm{O}$ double-bond length. Atom C 16 lies in the plane of the triazole ring, and atoms $\mathrm{O} 3, \mathrm{C} 11, \mathrm{C} 14$ and C 15 are coplanar (plane $P 1$). The dihedral angles formed by the triazole and C8-C13 rings with $P 1$ are 81.20 (3) and 5.16 (2) ${ }^{\circ}$, respectively. Atom C 1 lies in the plane of the $\mathrm{C} 2-\mathrm{C} 7$ benzene ring, and atoms $\mathrm{O} 1, \mathrm{O} 2, \mathrm{C} 1, \mathrm{C} 2$ and C 8 are coplanar (plane $P 2$). The dihedral angles formed by the triazole and $\mathrm{C} 2-\mathrm{C} 7$ rings with $P 2$ are 78.75 (3) and 82.05 (2) ${ }^{\circ}$, respectively.

The structure of (I) shows a number of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intra- and intermolecular interactions (Table 2) which stabilize the crystal structure.

Experimental

1-(4-Hydroxyphenyl)-3-(1H-1,2,4-triazol-1-yl)propan-1-one was prepared according to the method reported by Ogata et al. (1987). The title compound was prepared by the reaction of 1-(4-hydroxy-

Received 25 April 2005 Accepted 10 May 2005 Online 21 May 2005
phenyl)-3-(1H-1,2,4-triazol-1-yl)propan-1-one ($2.17 \mathrm{~g}, 10 \mathrm{mmol}$) with 4-fluorobenzoyl chloride ($1.59 \mathrm{~g}, 10 \mathrm{mmol}$) in acetone. Single crystals of (I) suitable for X-ray measurements were obtained by recrystallization from chloroform-ethyl acetate $(1: 3, v / v)$ at room temperature (m.p. 437-438 K). ${ }^{1} \mathrm{H}$ NMR (600 MHz , acetone- d^{6}, δ, p.p.m.): 7.12-8.15 ($10 \mathrm{H}, m, \mathrm{Ar}$), 3.03-3.92 ($4 \mathrm{H}, m, \mathrm{~N}-\mathrm{CH} 2-\mathrm{CH} 2-$ O). Analysis, calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{FN}_{3} \mathrm{O}_{3}$: C 63.71, H 4.16, N 12.38%; found: C 63.67 , H 4.22, N 12.71%.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{FN}_{3} \mathrm{O}_{3}$
$M_{r}=339.32$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.8352$ (11) \AA
$b=8.0741$ (14) \AA
$c=34.311$ (7) \AA
$V=1616.5(5) \AA^{3}$
$Z=4$
$Z=4$
$D_{x}=1.394 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.975, T_{\text {max }}=0.987$
9128 measured reflections

Mo $K \alpha$ radiation

Cell parameters from 2217
reflections
$\theta=3.1-21.3^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.38 \times 0.20 \times 0.12 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.093$
$S=1.02$
1953 reflections
226 parameters
H -atom parameters constrained

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are drawn as small spheres of arbitrary radii.

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 2$	0.93	2.42	$2.731(3)$	100
C13-H13 O^{i}		0.93	2.43	$3.180(4)$

Symmetry code: (i) $x+1, y, z$.
All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This project was supported by the National Natural Science Foundation of China (grant No. 40376023).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
James, M. N. G. \& Watson, K. J. (1966). J. Chem. Soc. C, pp. 1361-1371.
Ji, B. M., Du, C. X., Zhu, Y. \& Wang, Y. (2002). Chin. J. Struct. Chem. 21, 252255.

Ogata, M., Matsumoto, H., Kida, S., Shimizu, S., Tawara, K. \& Kawamurai, Y. (1987). J. Med. Chem. 30, 1497-1502.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, Y., Sun, X. W., Hui, X. P., Zhang, Z. X., Wang, Q. \& Zhang, Q. (2002). Chin. J. Chem . 20, 168-173.

